Mortgage Markets with Climate-Change Risk: Evidence from Wildfires in California

Paulo Issler* Richard Stanton* Carles Vergara[†] Nancy Wallace*

*Haas School of Business, U.C. Berkeley [†]IESE Business School

Online PhD Class in Empirical Household Finance: Climate Finance December 2020

California Fire Statistics

- Since 1972, the area burned each year in California has increased 5-fold.
- In 2018, 1.8M acres burned in wildland and wildland-urban-interface (WUI): over \$16B estimated losses and more than any other state in U.S., 85 deaths.
- In 2019, two wildfire events in Southern CA caused damage estimated at over \$25 B.
- In 2020, 9,279 fire events, 4.2M acres burned, 32 deaths.

CA Counties: Temperature and Precipitation (2000–2018)

Purpose of this Study

- Empirical investigation of link between fire events, house price and size dynamics, mortgage default, and address-specific demographics to determine long and short run effects on:
 - Characteristics of the housing stock in treatment and control areas.
 - Housing returns in treatment and control areas.
 - Mortgage default risk in treatment and control areas.
 - Degree of gentrification in treatment and control areas.
- Focus on geospatial panel data and fire prediction: fire incidence and magnitude, house values and characteristics, mortgage performance, weather dynamics.
 - How predictable are CA fire events?
 - Are these characteristics dynamic?
- Implications of results for residential fire-insurance pricing policies and mortgage lending.

Case Study: 1991 Oakland Tunnel Fire

Densely populated WUI in Berkeley and Oakland, CA:

- 25 people died, 150 seriously injured.
- 1,540 acres burned.
- 3,354 single-family homes destroyed.
- 437 apartment units destroyed.
- 2,000 vehicles destroyed.
- Overall replacement cost \$3 Billion (1991 dollars).

Case Study: 1991 Oakland Tunnel Fire

Physical elements:

- Terrain, slope aspect, temperature, and wind all elevate probabilities of fire.
- Temperature 90 degrees Fahrenheit.
- Wind: strong, dry, downslope winds.

Tunnel Fire: Four Facts

- Rebuilding: More than 95% of properties were rebuilt and newly reconstructed homes in fire area were more valuable.
- Relatively low mortgage-default rates for mortgage borrowers in the devastated area.
- Long-term effects: The disincentives for mortgage default lasted a long time.
- Coordination externalities: Large tracts of homes were replaced with modernized structures (due to build-to-code requirements). Related to fire insurance:
 - Fire insurance is required for all residential mortgages in the U.S.
 - Rebuilt homes must be built-to-code (priced in coverage).
 - Fire insurance is "priced" by deterministic fire-risk maps (CA Dept. of Insurance allows no probabilistic pricing and no pricing of re-insurance costs).

Overall California Fire Study: 2000-2018

Control group example: San Diego Witch Fire (2007)

- Treatment Group (orange):
 - 5,508 properties
 - 1,446 mortgages.
- Control Group 1 (pale orange): 0 to 1 mile:
 - 22,000 properties
 - 6,570 mortgages
- Control Group 2 (yellow): 1 to 2 miles
 - 22,000 properties
 - 7,289 mortgages

The Long-Run Effects on House Size (sq. feet). 5 and 10 years

	$ln(Size_{t+5})$	$ln(Size_{t+5})$	$ln(Size_{t+10})$	$ln(Size_{t+10})$
bigfire	0.00712 ***	0.00549 ***	0.00802 ***	0.00729 **
	0.00206	0.00204	0.00269	0.00268
fire		0.01149 ***		0.01142 *
		0.00393		0.00607
$ln(Size_t)$	0.86493 ***	0.86491 ***	0.81048 ***	0.81046
	0.00625	0.00625	0.01128	0.01128
Num. rooms	-0.00064 ***	-0.00064 ***	-0.00096 ***	-0.00096 ***
	0.00014	0.00014	0.00019	0.00019
Year FE	Yes	Yes	Yes	Yes
Census tract FE	Yes	Yes	Yes	Yes
Observations	34,545,997	34,545,997	6,805,306	6,805,306
R^2	0.85	0.85	0.84	0.81

The Long-Run Effects on House Prices. 5 and 10 years

	$ln(H_{t+5})$	$ln(H_{t+5})$	$ln(H_{t+5})$	$ln(H_{t+10})$	$ln(H_{t+10})$	$ln(H_{t+10})$
bigfire	0.0517 **	0.0527 **	0.0514 **	0.0566 **	0.0564 **	0.0546 *
	0.0223	0.0240	0.0238	0.0257	0.0269	0.0268
fire			0.0213			0.0283
			0.0154			0.0187
$ln(H_t)$	0.6905 ***	0.6840 ***	0.6840 ***	0.6360 ***	0.6381 ***	0.6381 ***
	0.0079	0.0081	0.0081	0.0162	0.0161	0.0161
$\Delta(In(Size_t))$		0.1768 ***	0.1768 ***		0.2017 ***	0.2017 ***
		0.0040	0.0040		0.0072	0.0072
Num. rooms	0.0054 ***	0.0063 ***	0.0063 ***	0.0064 ***	0.0077 ***	0.0077 ***
	0.0006	0.0005	0.0005	0.0007	0.0006	0.0006
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Census tract FE	Yes	Yes	Yes	Yes	Yes	Yes
(Year)*(Census tract) FE	Yes	Yes	Yes	Yes	Yes	Yes
Observations	57.227.115	11.221.195	11.221.195	26.147.870	6.654.055	6.654.055
R^2	0.80	0.80	0.80	0.78	0.78	0.78

Hypothesis 1: The probability of mortgage default conditional on a wildfire in the treatment group is higher than the probability of default in the control group.

A reduced-form difference-in-differences (DID) analysis:

 $default_{i,f} = treatment_{i,f} * afterfire_{i,f} + afterfire_{i,f} + treatment_{i,f} + \bar{X}_{i,f} + \varepsilon_{i,f},$ (1)

where:

- *default_{i,f}* = either delinquency or foreclosure of mortgage *i* during the 6-month period after the event of fire *f*;
- *treatment*_{*i*,*f*} = one if mortgage *i* is within the fire *f* zone and zero otherwise;
- *afterfire*_{*i*,*f*} = one after the fire *f* event zero before the fire *f*.
- $\bar{X}_{i,f}$ = mortgage controls,
- $\varepsilon_{i,f}$ = the error term.

A Stylized Model of Mortgages with Fire Risk

- Borrowers' options at each t: i) Keep making mortgage payments, ii) default, iii) prepay.
- If there is a fire... Borrowers' options at each *t*: i) rebuild or not, ii) keep making mortgage payments, iii) default, iv) prepay:
 - The rebuilding decision is made by borrowers given their insurance coverage and the requirements of local building codes.
 - Rebuilding presents large externalities the larger the fire the greater the potential gentrification externalities.

Hypothesis 2: The probability of default conditional on a wildfire decreases with: i) the probability of rebuilding; ii) the house price conditional on rebuilding; iii) the house price conditional on non-rebuilding; iv) the size of the fire.

Builds upon the DID analysis in equation (1):

$$default_{i,f} = treatment_{i,f} * bigfire_{f} * afterfire_{i,f} + treatment_{i,f} * afterfire_{i,f} + treatment_{i,f} * bigfire_{f} + bigfire_{f} * afterfire_{i,f} + afterfire_{i,f} + treatment_{i,f} + bigfire_{f} + \bar{X}_{i,f} + \varepsilon_{i,f},$$

$$(2)$$

Measurement challenge with Hypothesis 2

- Use "Big Fires" as a proxy for both the probability and the conditional distribution.
 - 1. With large fires, the probability of rebuilding is higher (most CA homeowners and all mortgage borrowers have casualty insurance);
 - 2. With large fires, future house prices are higher (benefits of positive coordination externalities and build-to-code requirements).
- Big-Fire dummy:
 - Equals 1 if the number of mortgages affected by the fire is at least one standard deviation above the mean number of mortgages affected by all CA fires;
 - Equals 0 otherwise.

Difference in Differences Result: Mortgage Foreclosures

Treatment group: Control group:	Fire Ring 0-1 [1]	Fire Ring 0-1 [2]	Fire Ring 0–1 [3]	Ring 0-1 Ring 1-2 [4]	Ring 0-1 Ring 1-2 [5]
treatment*bigfire*afterfire			-0.00605*** (0.00198)		
treatment*afterfire	0.00105 (0.00081)	0.00116 (0.00088)	0.00463** (0.00184)	-0.00076*** (0.00027)	-0.00052* (0.00030)
treatment*bigfire			-0.00079 (0.00064)		
bigfire*afterfire			-6.10e-05 (0.00047)		
afterfire	0.00270*** (0.00019)	0.00279*** (0.00021)	0.00280*** (0.000258)	0.00345*** (0.00025)	0.00331*** (0.00021)
treatment	7.04e-05 (0.00027)	-0.00021 (0.00027)	0.00036 (0.00062)	6.34e-05 (9.00e-05)	0.00013 (0.00010)
bigfire			-0.00041*** (0.00015)		
Mortgage controls Observations R-squared	No 208,422 0.001	Yes 177,532 0.007	Yes 177,532 0.007	No 412,604 0.001	Yes 350,590 0.008

IV Panel Regression

- First stage: estimate the probability of a big-fire event for each house as a function of weather.
 - Maximum temperature by month at the property location (triangulated to nearest NOAA measurement stations).
 - First-stage results: Important seasonal and geographic dynamics of the estimated probabilities of big fire events compared to the deterministic California fire maps.
- Second stage: IV panel regression with month-by-month measurement of mortgage delinquency or foreclosure given estimated fire probabilities, loan-to-value ratio, loan coupon differential to 10Y Treasury, fixed effects.
 - Second-stage results: Identical to prior analysis for both delinquency and foreclosure.

First-Stage Probability Estimates: Big Fire Event as a Function of Weather Data

	[1]	[2]	[3]	[4]
Max. temp.	5.93e-05*** (7.01e-06)		7.99e-05*** (8.13e-06)	7.95e-05*** (7.95e-06)
haz_code		0.00797*** (8.92e-05)	0.00822*** (9.78e-05)	
D. hazard=1				0.00777***
D. hazard=2				(0.000153) 0.00553*** (5.27= 05)
D. hazard=3				(5.37e-05) 0.0285*** (0.000373)
Constant	-0.00234*** (0.000521)	0.00119*** (9.56e-06)	-0.00473*** (0.000608)	-0.00465*** (0.000594)
Fixed effects: Observations R-squared	Yes 184,958,421 0.002	Yes 194,499,073 0.008	Yes 184,958,210 0.008	Yes 184,958,421 0.010

Southern California Probabilistic Fire Estimates 2017

(a) January

(b) April

(c) July

Southern California Deterministic Fire Codes

Panel Regression Result: Mortgage Foreclosures

	OLS Num. of mortgages	OLS Dummy	IV Dummy
	per wildfire [1]	[2]	[3]
Big fire	-1.31e-07**	-0.0104**	-0.033258**
	(5.17e-08)	(0.00415)	(0.01498)
LTV	8.14e-09	8.19e-09	-4.02e-08
	(1.39e-08)	(1.39e-08)	(2.03e-06)
coupon-interest rate diff.	-1.497	-1.498	-0.412
	(0.911)	(0.912)	(0.591)
Mortgage controls:	Yes	Yes	Yes
Fixed effects:	Yes	Yes	Yes
Observations	90,368,381	90,368,381	86,303,137
R-squared	0.072	0.072	_

Fire Insurance Exposure to the CA Mortgages

- Expected Big-Fire Loss (EBFL)

- 1. Estimate the value of each property for each month.
- 2. Estimate the probability of a big fire for each month from first stage IV.
- 3. Compute EBFL per property as as the time-specific value of each property multiplied by the probability of a big fire for the property at that time (assuming that the value of each property is zero after a fire has occurred).

Expected Big-Fire Losses (EBFL): (Prob. of Big Fire) \times (Property Value)

			Property-level	Property-level
Variable	Hazard Code	Obs	Mean (\$)	Std. Dev. (\$)
EBFL	3	4,030,442	20,189	27,323
EBFL	2	2,132,588	4,722	5,916
EBFL	1	2,525,164	6,376	6,346
EBFL	0	173,594,311	669	897
Variable	Total Months	Obs	Total (\$ Mil.)	Std. Dev. (\$ Mil.)
EBFL Annual Total	12	194,499,425	14,982	4,647

Conclusions

- First study of the effect of California wildfires on long-run house price dynamics, long-run dynamics of the housing stock, and mortgage delinquencies and foreclosure.
 - Merging large geospatial datasets: fire incidence and magnitude; maximum temperatures; house prices; and mortgage characteristics and performance.
- Findings for house price dynamics:
 - Long-run elevated returns in "big-fire" areas.
 - Long-run housing size growth in "big-fire" areas.
- Findings for mortgage performance: Difference-in-differences and IV panel regressions:
 - A significant increase in mortgage delinquency and foreclosure after a fire event.
 - Default and foreclosure decrease in the size of the fire (probably due to coordination externalities from build-to-code requirements and casualty-insurance coverage).
- Important implications for the pricing regulation of fire casualty insurance as well as banking regulation and supervision